221 research outputs found

    Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Working at high solids (substrate) concentrations is advantageous in enzymatic conversion of lignocellulosic biomass as it increases product concentrations and plant productivity while lowering energy and water input. However, for a number of lignocellulosic substrates it has been shown that at increasing substrate concentration, the corresponding yield decreases in a fashion which can not be explained by current models and knowledge of enzyme-substrate interactions. This decrease in yield is undesirable as it offsets the advantages of working at high solids levels. The cause of the 'solids effect' has so far remained unknown.</p> <p>Results</p> <p>The decreasing conversion at increasing solids concentrations was found to be a generic or intrinsic effect, describing a linear correlation from 5 to 30% initial total solids content (w/w). Insufficient mixing has previously been shown not to be involved in the effect. Hydrolysis experiments with filter paper showed that neither lignin content nor hemicellulose-derived inhibitors appear to be responsible for the decrease in yields. Product inhibition by glucose and in particular cellobiose (and ethanol in simultaneous saccharification and fermentation) at the increased concentrations at high solids loading plays a role but could not completely account for the decreasing conversion. Adsorption of cellulases was found to decrease at increasing solids concentrations. There was a strong correlation between the decreasing adsorption and conversion, indicating that the inhibition of cellulase adsorption to cellulose is causing the decrease in yield.</p> <p>Conclusion</p> <p>Inhibition of enzyme adsorption by hydrolysis products appear to be the main cause of the decreasing yields at increasing substrate concentrations in the enzymatic decomposition of cellulosic biomass. In order to facilitate high conversions at high solids concentrations, understanding of the mechanisms involved in high-solids product inhibition and adsorption inhibition must be improved.</p

    Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw

    Get PDF
    The potential of enzymes recycling after hydrolysis and fermentation of wheat straw under a variety of conditions was investigated, monitoring the activity of the enzymes in the solid and liquid fractions, using low molecular weight substrates. A significant amount of active enzymes could be recovered by recycling the liquid phase. In the early stage of the process, enzyme adsorb to the substrate, then gradually returning to the solution as the saccharification proceeds. At 50 °C, normally regarded as an acceptable operational temperature for saccharification, the enzymes (Celluclast) significantly undergo thermal deactivation. The hydrolysis yield and enzyme recycling efficiency in consecutive recycling rounds can be increased by using high enzyme loadings and moderate temperatures. Indeed, the amount of enzymes in the liquid phase increased with its thermostability and hydrolytic efficiency. This study contributes towards developing effective enzymes recycling strategies and helping to reduce the enzyme costs on bioethanol production.The authors acknowledge funding through FP7 KACELLE (Kalundborg Cellulosic Ethanol) project for supporting this work. We also thank Dra. Lucilia Domingues for supplying the yeast Saccharomyces cerevisiae CEN PK 113 wild type

    Correlating the ability of lignocellulosic polymers to constrain water with the potential to inhibit cellulose saccharification

    Get PDF
    BACKGROUND: Studies in bioconversions have continuously sought the development of processing strategies to overcome the “close physical association” between plant cell wall polymers thought to significantly contribute to biomass recalcitrance [Adv Space Res 18:251–265, 1996],[ Science 315:804–807, 2007]. To a lesser extent, studies have sought to understand biophysical factors responsible for the resistance of lignocelluloses to enzymatic degradation. Provided here are data supporting our hypothesis that the inhibitory potential of different cell wall polymers towards enzymatic cellulose hydrolysis is related to how much these polymers constrain the water surrounding them. We believe the entropy-reducing constraint imparted to polymer associated water plays a negative role by increasing the probability of detrimental interactions such as junction zone formation and the non-productive binding of enzymes. RESULTS: Selected commercial lignocellulose-derived polymers, including hemicelluloses, pectins, and lignin, showed varied potential to inhibit 24-h cellulose conversion by a mix of purified cellobiohydrolase I and β-glucosidase. At low dry matter loadings (0.5% w/w), insoluble hemicelluloses were most inhibitory (reducing conversion relative to cellulose-only controls by about 80%) followed by soluble xyloglucan and wheat arabinoxylan (reductions of about 70% and 55%, respectively), while the lignin and pectins tested were the least inhibitory (approximately 20% reduction). Low field nuclear magnetic resonance (LF-NMR) relaxometry used to observe water-related proton relaxation in saturated polymer suspensions (10% dry solids, w/w) showed spin-spin, T(2,) relaxation time curves generally approached zero faster for the most inhibitory polymer preparations. The manner of this decline varied between polymers, indicating different biophysical aspects may differentially contribute to overall water constraint in each case. To better compare the LF-NMR data to inhibitory potential, T(2) values from monocomponent exponential fits of relaxation curves were used as a measure of overall water constraint. These values generally correlated faster relaxation times (greater water constraint) with greater inhibition of the model cellulase system by the polymers. CONCLUSIONS: The presented correlation of cellulase inhibition and proton relaxation data provides support for our water constraint-biomass recalcitrance hypothesis. Deeper investigation into polymer-cellulose-cellulase interactions should help elucidate the types of interactions that may be propagating this correlation. If these observations can be verified to be more than correlative, the hypothesis and data presented suggest that a focus on water-polymer interactions and ways to alter them may help resolve key biological lignocellulose processing bottlenecks

    Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content

    Get PDF
    BACKGROUND: The recent discovery of accessory proteins that boost cellulose hydrolysis has increased the economical and technical efficiency of processing cellulose to bioethanol. Oxidative enzymes (e.g. GH61) present in new commercial enzyme preparations have shown to increase cellulose conversion yields. When using pure cellulose substrates it has been determined that both oxidized and unoxidized cellodextrin products are formed. We report the effect of oxidative activity in a commercial enzyme mix (Cellic CTec2) upon overall hydrolysis, formation of oxidized products and impact on β-glucosidase activity. The experiments were done at high solids loadings using a lignocellulosic substrate simulating commercially relevant conditions. RESULTS: The Cellic CTec2 contained oxidative enzymes which produce gluconic acid from lignocellulose. Both gluconic and cellobionic acid were produced during hydrolysis of pretreated wheat straw at 30% WIS. Up to 4% of released glucose was oxidized into gluconic acid using Cellic CTec2, whereas no oxidized products were detected when using an earlier cellulase preparation Celluclast/Novozym188. However, the cellulose conversion yield was 25% lower using Celluclast/Novozym188 compared to Cellic CTec2. Despite the advantage of the oxidative enzymes, it was shown that aldonic acids could be problematic to the hydrolytic enzymes. Hydrolysis experiments revealed that cellobionic acid was hydrolyzed by β-glucosidase at a rate almost 10-fold lower than for cellobiose, and the formed gluconic acid was an inhibitor of the β-glucosidase. Interestingly, the level of gluconic acid varied significantly with temperature. At 50°C (SHF conditions) 35% less gluconic acid was produced compared to at 33°C (SSF conditions). We also found that in the presence of lignin, no reducing agent was needed for the function of the oxidative enzymes. CONCLUSIONS: The presence of oxidative enzymes in Cellic CTec2 led to the formation of cellobionic and gluconic acid during hydrolysis of pretreated wheat straw and filter paper. Gluconic acid was a stronger inhibitor of β-glucosidase than glucose. The formation of oxidized products decreased as the hydrolysis temperature was increased from 33° to 50°C. Despite end-product inhibition, the oxidative cleavage of the cellulose chains has a synergistic effect upon the overall hydrolysis of cellulose as the sugar yield increased compared to using an enzyme preparation without oxidative activity

    Cellulosic ethanol: interactions between cultivar and enzyme loading in wheat straw processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2.5, 5 and 10 FPU g<sup>-1 </sup>dm pretreated straw) and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment.</p> <p>Results</p> <p>Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could be warranted. At an enzyme loading of 5 FPU g<sup>-1 </sup>dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher yields than coarse particles. The amount of coarse particles from the cultivar with lowest sugar yield was negatively correlated with sugar conversion.</p> <p>Conclusions</p> <p>We conclude that genetic differences in sugar yield and response to enzyme loading exist for wheat straw at pilot scale, depending on differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment.</p

    The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    Get PDF
    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood. Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry, particularly when it comes to up-scaling of processes based on insoluble feed stocks
    corecore